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A variationally consistent finite element approach to the
two-fluid internal contact-line problem
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SUMMARY

A new method for simulating incompressible viscous fluid flow involving moving internal contact lines is
presented. The steady state interface shape is determined by a variationally consistent formulation of the
surface tension contribution to the equations of motion adapted to the case of internal contact lines
through the application of a global force balance compatibility condition that consistently removes the
pressure indeterminacy. The Crouzeix–Raviart element is chosen to capture the pressure discontinuity at
the two-fluid interface. The resulting discrete equations are solved by an iterative procedure which
displays fast convergence characteristics for small capillary numbers. Numerical results for the case of the
steady movement of a fluid meniscus in a two-dimensional channel are presented. Copyright © 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The moving contact-line problem remains a challenging problem despite the efforts of many
research groups. Although many of the outstanding questions relate to the physical character-
ization of the problem [1], the numerical solution of the resulting equations also remains a
difficult task. On the physical modeling side, researchers are faced with two main challenges:
first, the breakdown of the continuum theory at small distances from the contact line manifests
itself as a logarithmic stress singularity; and, second, the value of the dynamic contact angle as
a function of the interface velocity is undetermined within the continuum framework.
Historically, ad hoc assumptions that produced agreement with experimental results have been
used to achieve closure: slip models can relieve the singularity at the contact point, whereas the
assumption that the dynamic contact angle has the same value as the static contact angle
appears to be in agreement with experimental results if the slip length is treated as an
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adjustable parameter [2]. It has been recognized, however, that the true resolution of the
dynamical behavior of contact lines lies in the investigation of the molecular dynamics of
contact regions [3,4].

The authors have employed molecular dynamics (MD) simulations [5] of the moving
contact-line problem in order to gain further insight into the dynamics of contact-line motion
at the molecular scale. These simulations were performed in a two-dimensional channel
geometry with two fluids of the same density and viscosity for small capillary numbers
Ca=mU/g, where m is the fluid viscosity, g is the surface tension and U is the interface
velocity. Continuum simulations in the same geometry were performed and appropriate
boundary conditions were found which reproduce the molecularly derived interface shape. It
was shown in Reference [5] that, for Ca50.072, the assumption that the dynamic contact
angle remains equal to the static contact angle is reasonable, and that slip at the wall is limited
to a few (5–10) molecular diameters from the contact line. In this paper, we discuss the
continuum technique developed for this investigation. Despite the existence of various tech-
niques, some of which are reviewed below, we feel that no mathematically complete, variation-
ally consistent method, which treats the internal moving contact-line problem, has appeared in
the literature. This paper describes such a method. We will thus limit ourselves to the
mathematical discussion of the moving contact-line problem by using the most common
(although ad hoc) boundary conditions found in the literature. More information on appropri-
ate boundary conditions is given in Reference [5].

The technique presented in this paper is also used in the validation of a novel hybrid
atomistic–continuum simulation technique, where the moving contact-line problem is used as
a validation example. In this hybrid approach, the region close to the wall is treated by
molecular dynamics, whereas the remainder of the computational domain is treated by the
significantly less computationally expensive continuum description. The interested reader is
referred to Reference [6].

Although finite element solutions of steady moving contact-line problems first appeared
many years ago [2], the complex problem of steady state interface shape determination is not
yet entirely resolved. The source of the numerical difficulties is primarily the non-linearity of
the problem, which arises (even for Stokes flow) due to the coupling between the two-fluid
interface geometry and the two-dimensional flow field.

A common approach to obtaining consistent solutions for both the flow field and the
two-fluid interface is to apply a ‘segregated’ iterative technique: each iteration consists of a
flow field solution for a fixed two-fluid interface, followed by a two-fluid interface adjustment.
These techniques take advantage of the fact that, in the steady state, the two-fluid interface
obeys both (i) the two-fluid stress continuity condition, and (ii) the kinematic condition, which
requires the normal fluid velocity at the interface to vanish. A solution can be obtained by
relaxing one of these two conditions, and then exploiting the residual of this relaxed condition
as the driving force for an improved two-fluid interface geometry.

The exact time-dependent evolution of the two-fluid interface from an arbitrary initial
geometry to the steady state is an example of such a procedure. In this case, the kinematic
condition is relaxed and the resulting (non-zero) normal velocities on the two-fluid interface
then serve to integrate the interface position forward in time. This technique is computation-
ally very inefficient: the time step must be prohibitively small [7,8] due to the very small
elements required in the vicinity of the contact line.
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If the dynamics of equilibration are of no interest, and only the steady state solution is
required, much faster iterative techniques can be devised [2,7]. In particular, in the work of
Lowndes [2], flow field solutions are obtained by relaxing not the kinematic condition, but
rather the stress continuity condition. Extension of this work to two-fluid systems is reported
in Reference [9]. The Lowndes approach, however, is based upon the strong form of the stress
continuity equation, and does not, therefore, constitute a fully consistent finite element
treatment of the problem. The latter is not only of interest from a theoretical point of view:
variationally consistent schemes are often more accurate and ultimate extension to three space
dimensions is arguably simpler.

Consistency is obtained in Ho and Ronquist [7] by application of the appropriate variational
form for the traction boundary condition; the latter is first derived in Reference [10] for the
two-dimensional case, and subsequently extended in Reference [11] to three dimensions. The
residual normal traction supplies the driving force for the motion of the two-fluid interface,
just as in Reference [2], but now the variational form of the stress continuity condition is
satisfied at equilibrium. The issue of internal contact lines and the resulting pressure indetermi-
nacy is not addressed in Reference [7], however, as the work focuses on free surface flows with
no moving contact lines.

The technique presented here may be viewed as a synthesis of the techniques proposed in
References [2,7]: the appropriate surface tension variational form and associated normal
traction residual is inspired by Reference [7]; the determination of the pressure drop across the
interface is addressed through application of a global force balance equation, as first
introduced in Reference [2]. In particular, our focus is on the solvability condition that arises
as a result of the internal contact line.

2. PHYSICAL PROBLEM

We describe here the physical problem of interest, with particular focus on the conditions
associated with the two-fluid interface. The full mathematical description is then given in the
next section.

We first consider two static immiscible fluids in a two-dimensional channel: the meniscus
that separates the two fluids will adopt a shape that balances the capillary stresses with the
pressure difference between the two fluids, subject to the contact angle boundary condition.
We next permit the two fluids to move. In particular, we consider the problem in which one
fluid displaces the other fluid at a constant interface (average fluid displacement) speed U. The
meniscus shape will now further distort due to the stresses created by the flowing fluid; the
interface shape is an unknown and must be determined with the flow field by solution of a
non-linear set of coupled partial differential equations (PDEs). The problems of interest here
are limited to the case of small Reynolds number, RerUH/m�1, and small capillary
number, CamU/gB0.1; here r is the density, H is the channel half-width, m is the dynamic
viscosity and g is the assumed-constant surface tension coefficient between the two fluids.

Finally, we move to the reference frame of the moving interface, as shown in Figure 1. The
interface is now stationary and the walls of the channel move in the x̂2-direction with velocity
−U. We can further take advantage of the symmetry of the problem and consider only the
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Figure 1. Problem geometry: the domain of interest is V=V1@V2.

domain V, which extends from the wall to the centerline of the channel. Assuming that the
channel is sufficiently long [8], the inflow and outflow velocity profiles will be fully developed
and hence parabolic. In particular, since in the reference frame of the moving contact line the
interface does not move, there can be no fluid displacement; the velocity profiles on GBC and
GAD are thus zero mass flux parabolic profiles that satisfy no-slip (u2= −U) at the moving
wall.

As already indicated, the normal velocity on the two-fluid interface Gf must be zero in the
steady state. Since the velocity component normal to the wall is necessarily zero, the velocity
of the fluid on Gf is zero in both components at the wall (point H). This, however, is in conflict
with the usual no-slip boundary condition at the wall, which would require that fluid particles
adjacent to the wall move with velocity −U in the x̂2-direction. This discrepancy is, of course,
the source of the intransigence of the moving contact-line problem. In order to relieve this
boundary condition incompatibility, and the resulting shear stress singularity, a slip boundary
condition is employed: the fluid velocity at the wall is zero at the contact point (full slip) and
smoothly relaxes to −U away from the contact point. The characteristic distance for the
decay, l, will be denoted the slip length.

In our simulations we permit slip through two different approaches. In the first approach,
we apply the well-known (but admittedly ad hoc) Navier condition
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s21= −
m

l
(U+u2) on GCD (1)

where u= (u1, u2) is the fluid velocity and sij is the stress tensor. In the second approach, we
specify the slip profile, u2(x1=H, x2)=U(x2), as dictated (say) by a MD calculation [5]. In
most of this paper we shall focus on the Navier condition; at the conclusion we indicate the
necessary changes for the specified velocity approach.

Finally, the contact angle must be specified. The contact angle, u, is defined as the angle
between the bounding wall, GCD, and the tangent of Gf at the wall, as shown in Figure 1. (The
symmetry plane introduces another ‘artificial’ contact angle (at G) which must be 90°.) Note
that the dynamic contact angle u is not a thermodynamic property, and its specification can,
thus, be problematic.

3. VARIATIONAL FORMULATION

We first give the strong form of the equations. The equations governing the fluid flow are the
steady incompressible Stokes equations

(sij

(xj

=0 in V (2)

(ui

(xi

=0 in V (3)

where

sij=m
�(ui

(xj

+
(uj

(xi

�
−pdij (4)

is the stress tensor. Here, p is the pressure and dij is the Kronecker delta symbol. We adopt the
Einstein summation convention and further assume that all unrepeated indices range from 1 to
2. We neglect gravity forces, although these can, of course, be readily included.

The boundary conditions are then given by

n̂i(sij �Gf
2−sij �Gf

1)n̂j=gk on Gf (5)

t. i(sij �Gf
2−sij �Gf

1)n̂j=0 on Gf (6)

dys(0)
ds

=0 (7)

dys(H)
ds

=cos u (8)
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and

u1=0 on G (9)

u2=Ug on GAD, GBC (10)

and

s21=0 on GAB (11)

s21= −
m

l
(U+u2) on GCD (12)

Here n̂ and t. are the right-handed outward unit normal and tangent on Gf; Gf
2 and Gf

1 refer to
the limits as we approach Gf from V2 and V1 respectively; k is the curvature; s is the arc length
co-ordinate along Gf such that s=0 and s=S correspond to points G and H on Gf

respectively; G is the union of GAB, GBC, GCD and GDA; ys(x1) is the two-fluid interface position
as a function of x1; and g is the parabolic zero mass flux profile, g(x1/H)=1

2−
3
2(x1/H)2. In

what follows, we shall refer only to the non-dimensional form of the governing equations, in
which we identify H=1, U=1, m=1, g=Ca−1 and l=o.

We now turn to the variational formulation. First, it is convenient to introduce the function
spaces L2(V), H1(V), L0

2(V), HD
1 (V), H0

1(V), HGf

1 (V) and HGf0
1 (V). As usual [12], L2(V) is the

space of functions that are square integrable over V, and H1 is the space of functions 6 such
that 6�L2(V) and (6/(xi�L2(V). Then

L0
2(V)=

!
q�L2(V)� &

V1

q dA=0,
&

V2

q dA=0
"

(13)

HD
1 (V)={6i�H1(V), i=1, 2� 6 �GAD

=6 �GBC
= (0, g), 61�GAB

=61�GCD
=0} (14)

H0
1(V)={6i�H1(V), i=1, 2� 6 �GAD

=6 �GBC
=0, 61�GAB

=61�GCD
=0} (15)

H. Gf

1 (V)={6i�H1(V), i=1, 2� 6 �GAD
=6 �GBC

= (0, g), 6in̂i �Gf
=0, 61�GAB

=61�GCD
=0}

(16)

H. Gf0
1 (V)={6i�H1(V), i=1, 2� 6 �GAD

=6 �GBC
=0, 6in̂i �Gf

=0, 61�GAB
=61�GCD

=0} (17)

Note that HD
1 , H0

1, H. Gf

1 and H. Gf0
1 are all product spaces; note also that in H. Gf

1 and H. Gf0
1 the

tangential component of 6 is free to vary on Gf. Finally, H1(Gf) is the space of scalar functions
y for which y and dy/ds are square integrable over Gf.

We next introduce the bilinear forms

a(6, w)=
&

V

(6i
(xj

�(wi

(xj

+
(wj

(xi

�
dA+

1
o

&
GCD

62w2 ds (18)
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b(6, q)= −
&

V

(6i
(xi

q dA (19)

b2(6, q)= −
&

V2

(6i
(xi

q dA (20)

Here, a( · , · ) is defined and continuous over HD
1 , H0

1, H. Gf

1 and H. Gf0
1 ; similarly, b( · , · ) is

defined and continuous over X×L2(V), for X=HD
1 , H0

1, H. Gf

1 and H. Gf0
1 . Note that b(6, q)=

0, Ö6�H. Gf0
1 , for q constant in V1 and zero in V2 and q constant in V2 and zero in V1; there are

two spurious modes when the normal velocity on Gf is required to vanish.
We shall also need several linear forms. First,

lU(6)= −
1
o

&
GCD

62 ds (21)

is required for the Navier condition. Second, and more importantly,

lg(6 ; ys)= −Ca−1 &
Gf

d62
ds

dys

ds
ds+Ca−162(1) cos u (22)

shall represent the surface tension terms. More properly, we should replace the integral in
Equation (22) with a duality pairing; also, y may need to be slightly more regular than H1(Gf)
for the problem to be well posed.

We now look for a velocity u in HD
1 (V) and a pressure p= p̃+p, p̃ in L0

2(V), p in R, where
the latter decomposition permits a pressure level difference between the two fluids. The
interface shape ys is sought in H1(Gf). These unknowns must satisfy

a(u, 6)+b(6, p̃)+b2(6, p)=lg(6 ; ys)+lU(6), Ö6�H0
1(V) (23)

b(u, q)=0, Öq�L0
2(V) (24)

and

uin̂i=0 on Gf (25)

We can see that Equations (2) and (3) follow from Equations (23) and (24) by taking 6 to be
non-zero in V, while Equations (11) and (12) follow by taking 62 non-zero on GAB and GCD.
The tangential stress continuity equation (6) is enforced by variations in the t. -direction on Gf;
although uin̂i=0 from Equation (25), 6in̂i=0 is not constrained in Equation (23), and hence
the normal stress continuity equation (5) is also naturally imposed.

Alternatively, we can introduce the following formulation, which makes some of the
solvability issues more transparent, and will also be the starting point for the derivation of our
two-fluid interface iterative procedure. In this case we look for: (u, p̃, p, ys) in (HGf

1 (V)×
L0

2(V)×R×H1(Gf)) such that
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a(u, 6)+b(6, p̃)+b2(6, p)=lU(6), Ö6�H. Gf0
1 (V) (26)

b(u, q)=0, Öq�L0
2(V) (27)

and

lg(6 ; ys)=a(u, 6)+b(6, p̃)+b2(6, p)−lU(6), Ö6�H0
1(V) (28)

In this formulation, uin̂i=0 of Equation (25) is actually imposed by the appropriate choice of
space, H. Gf

1 (V). However, since 6in̂i=0 for 6 in H. Gf0
1 (V), Equation (26) only imposes the

tangential stress condition, not the normal stress continuity equation (5); the latter condition
is now enforced by Equation (28).

Equations (22) and (23) involve the x2 component of the normal stress continuity equation
(5). It can be shown that if this condition is satisfied, then the complete variational-weak
formulation of Equation (5) is also satisfied

a(u, 6)+b(6, p̃)+b2(6, p)−lU(6)=Lg(6 ; xs), Ö6�H0
1(V) (29)

where

Lg(6 ; xs)= −Ca−1 &
Gf

d6i
ds

dxsi

ds
ds+Ca−162(1) cos u (30)

and xs= (xs1, xs2)= (xs1, ys) are the co-ordinates of the two-fluid interface Gf [10]. To show
this, we first note that we can express any 6 as 61x̂1+62x̂2, and that, thanks to Equation (28),
the 62x̂2 contribution to Equation (29) clearly vanishes. We next note that if t. 1 is always
non-zero, then 61x̂1 may be expressed as C+F, where C�Gf

=61t. /t. 1 and F�Gf
= −61t. 2/t. 1x̂2.

These contributions to Equation (29) also vanish—the former due to Equation (26) and the
latter due to Equation (28)—and the result is thus proven. Cases in which t. 1 may vanish, for
example, fully wetting configurations, are beyond the scope of the current investigation.

We know, on physical grounds, that the pressure level is indeterminate. However, as already
discussed, b(6, q) has two spurious modes for u�H. Gf0

1 (V), and hence to render p̃ unique in
Equation (26) L0

2(V) requires zero average in both domains, which is clearly overconstrained.
To rectify the situation we have introduced the scalar p, which must be determined by a global
force balance. In fact, this global force balance represents the (left null space) solvability
condition associated with the indeterminacy (right null space) of the (say) average position of
the free surface.

In particular, it is clear from Equations (22) and (28) that the solution is translationally
invariant: we may add any constant to ys with impunity. From the ‘left’ side we notice that the
surface Laplacian is annihilated by any function in H0

1(V), such that 62=1 on Gf. The
associated solvability condition—our equation for p— is given by

Ca−1 cos u={a(u, 6)+b(6, p̃)+b2(6, p)−lU(6)}, Ö6�{H0
1(V)� 62�Gf

=1} (31)
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which is just the variational form of the normal force balance on Gf

Ca−1 cos u=
& S

0

(s2j �Gf
2−s2j �Gf

1)n̂j ds=
& 1

0

n̂i(sij �Gf
2−sij �Gf

1)n̂j dx1 (32)

as derived in Reference [1]. Recall that u is the imposed dynamic contact angle. Note that,
because u is in equilibrium from Equation (26), p is insensitive to the particular lifting of 6
chosen in Equation (31); numerical convenience will suggest an obvious candidate, as we
discuss in Section 5.

4. DISCRETE EQUATIONS

We first introduce the finite element approximation (uhi, ph) to (ui, p) over a suitable triangula-
tion Th of V such that

V( =.
k

T( h
k

where Th
k are the triangular elements. The variable geometry requirements necessitates the

application of an isoparametric formulation in which the mid-points of the sides of elements
for which the end-points lie on G are displaced so as to also lie on G. The resulting
isoparametric mapping Fk from the reference element T. to Th

k, depicted in Figure 2, takes the
form

(x1(j), x2(j))= %
6

i=1

(x1, x2)ihi(j) (33)

where the hi are the usual quadratic reference element shape functions, (x1, x2)i are the
co-ordinates of the six elemental boundary nodes, and j is the vector of reference element

Figure 2. Elemental mappings.
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(barycentric) co-ordinates (j1, j2, 1−j1−j2). The Jacobian of the transformation is a
quadratic function of j.

In order to simplify our task, we shall require that nodes on Gf are equispaced in the
x̂1-direction, and that the x1 location of these nodes is fixed during the iterative process to be
discussed in Section 5. This implies that x1 on Gf in element Th

k is a linear function of (say)
j1, Fx 1

k (j1), and hence the inverse edge mapping j1=Gk(x1) exists and is also linear. We
deduce that

ys=Fx 2

k (j1)=Fx 2

k $Gk(x1) (34)

is piecewise quadratic in x1 and thus ys�Ys{y �Dk
�P2(Dk), ÖDk�GD}SH1(Gf), where Dk is

the projection of Th
k onto the x1 axis, Pq(Dk) is the space of the qth-order polynomials over Dk,

and G( D=@k D( k.
The complete statement of the discrete problem is then: find (uh, p̃h, ph, ysh)� (Xh, Yh, R, Ys)

such that

ah(uh, 6)+bh(6, p̃h)+b2h(6, ph)=lU(6), Ö6�WhGf0
(V) (35)

bh(uh, q)=0, Öq�Yh (36)

and

lg(6 ; ysh)=ah(uh, 6)+bh(6, p̃h)+b2h(6, ph)−lU(6), Ö6�Wh0 (37)

where

Xh={6 �Th
=6 $Fk−1

, 6�P2
+(T. ), ÖTh�Th}SHGf

1 (V) (38)

Yh={q �Th
=q $Fk−1

, q�P1(T. ), ÖTh�Th}SL0
2(V) (39)

WhGf0
={6 �Th

=6 $Fk−1
, 6�P2

+(T. ), ÖTh�Th}SHGf0
1 (V) (40)

Wh0={6 �Th
=6 $Fk−1

, 6�P2
+(T. ), ÖTh�Th}SH0

1(V) (41)

and

P2
+(T. )={P2(T. )+aTh

j1j2j3, aTh
�R} (42)

is the space of quadratic polynomials enhanced by a cubic bubble function. (Note that the ph

term in Equation (35) does not in fact contribute.)
This particular choice of the Crouzeix–Raviart element is very well suited for two-fluid

interface problems: pressure continuity is not enforced across elemental boundaries, thus
enabling the solution to correctly capture the surface tension-induced pressure discontinuity
across the two-fluid interface. (We recall the cubic bubble function is added to sufficiently
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enrich the velocity degrees of freedom so that these elements, which have substantially more
pressure degrees of freedom than the continuous pressure Taylor–Hood elements, still satisfy
the inf–sup condition.) The subscript h on the linear and bilinear forms indicates the
approximation introduced by the isoparametric representation of the problem geometry, and
the resulting application of quadrature rules [13] for the evaluation of the elemental integrals.
In this work, a seven-point quadrature rule is used.

5. ITERATIVE INTERFACE PROCEDURE

Equation (37) is the point of departure for the derivation of the variational form for the
iterative interface procedure. We exploit the fact that the two sides of Equation (37) will not
balance unless the steady state solution has been achieved; we can thus use the residual of (37)
as a force to drive the interface shape towards the steady state solution. More specifically, we
write ys=ys+Dy, and thereby obtain a Laplacian operator for the ‘correction’ displacement
Dy

−
& S

0

(62
(s
(Dysh

(s
ds=

& S

0

(62
(s
(ysh

(s
ds−62(1) cos u

−Ca(ah(uh, 6)+bh(6, p̃h)+b2h(6, ph)−lU(6)), Ö6�Wh0(V) (43)

When the iteration has converged, Dy=0, and the above equation reduces to Equation (37),
which must be satisfied in the steady state.

Note that although two Neumann boundary conditions—two angles, one the contact angle
and the other the symmetry condition—can be specified for this problem, this would result in
an ill-posed problem, since the absolute level of ys would be allowed to ‘float’; this reflects the
invariance of Equation (37) under an arbitrary displacement in the x̂2-direction as discussed in
Section 3. To ensure uniqueness, only the symmetry Neumann condition is used along with a
Dirichlet boundary condition of zero displacement at some other location (in particular, the
wall), which thus specifies the two-fluid interface displacement level. Solvability is ensured by
the correct choice of p as per Equation (31).

The complete solution algorithm then consists of the following steps:

1. Solve the discrete Stokes equations (35) and (36) for uh, p̃h for some given initial geometry
ys

0.
2. Solve

b2h(6, ph)=Ca−1 cos u−{ah(uh, 6)+bh(6, p̃h)−lU(6)} (44)

to find ph. The numerical value of {ah(uh, 6)+bh(6, p̃h)} is simply the sum of the stress
‘residuals’ on Gf, i.e., the sum of the entries corresponding to the x̂2-direction velocity nodes
lying on Gf of the vector that results from multiplying the stiffness matrix with the solution
obtained in step (1). The set of coefficients b2h(6, ph) can be easily obtained by multiplying
the stiffness matrix by a vector whose non-zero entries are unity at all pressure nodes on
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one side of Gf. Note that these evaluations correspond to the choice 6�{Wh0(V)� 62�Gf
=1}

in which 61=0 and 62 is the sum of all the nodal basis functions associated with Gf.
3. Apply

−
& S

0

(62
(s
(Dysh

(s
ds=

& S

0

(62
(s
(ysh

(s
ds−62(1) cos u

−Ca(ah(uh, 6)+bh(6, p̃h)+b2h(6, ph)−lU(6)), Ö6�Wh0(V)
(45)

to calculate the ‘corrected’ interface shape.
4. Repeat the procedure to convergence.

For low Ca the method converges quite rapidly, as we discuss below.

6. NUMERICAL RESULTS

6.1. Triangulations

We next describe the meshes that we shall use in the examples, although our scheme is in no
way limited to any particular triangulation strategy. For simplicity, we shall consider struc-
tured meshes, in particular structured meshes in which the degrees of freedom are concentrated
near the contact line. These resulting meshes do not satisfy the shape regularity condition as
h�0 [14]; however, for the h studied here we do not believe that the error is adversely affected
by this transgression. In particular, we obtain similar results for (much more expensive)
uniform and regular structured meshes. Future work will also consider unstructured meshes,
which are clearly the best choice, and will permit us to perform more conclusive spatial
convergence studies; our focus here, however, is on the finite element formulation.

It has been suggested [1] that, for the complete resolution of the slip phenomenon, the
element size close to the contact line must be much smaller than l, the slip length, due to the
weak (logarithmic) singularity in the velocity gradient and pressure as the contact line is
approached. We satisfy this requirement with a mesh that is fairly coarse away from the
interface and wall, but rather fine in the vicinity of Gf and GCD. More specifically, we begin
with a ‘background’ grid of 5×10 element pairs in the x̂1- and x̂2-directions respectively.
Further refinement in the x̂1-direction is subsequently achieved by splitting the last element
(close to the wall) in a 3:1 ratio. The refinement in the x̂2-direction is obtained by applying an
analogous procedure to the layer of two elements enclosing the two-fluid interface. For
example, a 8×18 mesh specification implies that the element closest to the wall in the
x̂1-direction has been successively divided in a 3:1 ratio three times, yielding a smallest element
(the elements closest to the wall) with an edge size of 0.2 ·(0.25)3=3.125e−3; similarly, the
smallest element edge size in the x̂2-direction (the elements closest to Gf) is 0.5 ·0.2 ·(0.25)4=
3.906e−4.

Figure 3 demonstrates the ‘background’ grid and the first level of refinement, a 6×12 grid;
in the case illustrated in Figure 3, Gf is flat. When Gf is curved, a linear stretching in x̂2 is
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applied as a function of the element distance from Gf, with the dilation reducing to zero on
GAD and GBC; this ensures compatibility between the problem geometry and the finite element
mesh. The advantage of this mesh is that very fine elements are produced near the contact line
H, with a relatively small total number of elements. The main disadvantage, as already
indicated, is that the angles in elements close to G, C and D are not bounded away from zero
as we increase the number of elements indefinitely [14].

6.2. Numerical examples

The length of the channel is chosen to extend three channel half-widths in each direction
(L=6) so that the assumption of fully developed flow at inflow and outflow is justified [8]. In
all cases presented here we set o=0.01, u=100° and consider a 10×24 mesh; only Ca is
varied. Figures 4 and 5 show the converged solution for Ca=0.02. To the authors’ knowledge,
this is the first study of the dynamics of contact-line motion in a two-dimensional channel, and
thus no numerical or experimental results are available for direct comparison. Our results for
interface shapes as a function of Ca are, however, in qualitative agreement with the axisym-
metric results of Reference [15], which considers the contact line involving two fluids of the
same viscosity in a tube.

The existence of secondary recirculation regions in the advancing fluid (here V1) is reported
in References [9,15]. Mavrides et al. [9], using a velocity profile along the slip wall rather than
a Navier condition, found that the recirculation region occurs in the less viscous fluid. Similar
results for fluids of the same viscosity are presented in Reference [15]. We confirm the existence
of secondary recirculation regions close to points G and H, in qualitative agreement with the
results of Reference [15] for the same choice of parameters (Ca=0.001, u=40°, o=0.006).
(Note, however, that our slip model and that of Reference [15] are not the same.)

Figure 3. A 6×12 finite element grid.
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Figure 4. Velocity solution for Ca=0.02.

The iterative procedure exhibits fast convergence characteristics. Figure 6 shows the interme-
diate two-fluid interface geometries obtained en route to convergence starting from a horizon-
tal flat interface. In this example (Ca=0.02) the maximum Dy change is less than 10−4 after
four iterations. Note that the convergence is slower as Ca increases, since the importance of
capillary forces diminishes [7]. The convergence rate is also sensitive to the slip length: for
o�O(10−2) underelaxation—only a fraction (typically not smaller than 1/5) of the computed
‘correction displacement’ Dy is used to obtain the next interface geometry—is required for
Ca\0.05, whereas for o�O(1) underelaxation is required only for Ca\0.1. Figure 7 shows
the convergence process for p as a function of the iteration number for Ca=0.02. We notice
that p takes somewhat longer to fully converge than the two-fluid interface shape, which is a
manifestation of the fact that it is fairly sensitive to small changes to the shape of Gf.
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Figure 5. Velocity solution close to the interface for Ca=0.02.

Figure 6. Two-fluid interface geometry convergence history for Ca=0.02 (n= iteration number). Note
that the axes are not drawn to scale to emphasize the differences between the various iterates.

Christodoulou and Scriven [16] report that the imposition of the dynamic contact angle as
a weak boundary condition resulted in large deviations between the desired and the observed
dynamic contact angle. This problem may be related to their iterative solution technique,
which additionally did not converge for a wide range of dynamic contact angles. For this
reason they resorted to imposing the dynamic contact angle as an essential boundary
condition. We did not face any of the above problems although our capillary numbers were
restricted to CaB0.1 and the slip length was only a few orders of magnitude smaller than the
computational domain (o\10−3).
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Figure 7. ph convergence history for Ca=0.02 (n= iteration number).

Our spatial convergence studies include the comparison of interface shapes for Ca=0.02 as
a function of the mesh size. Various mesh resolutions are used between 8×20 (the coarsest)
and 12×28 (the finest). The two-fluid interface shapes obtained with the two most refined
meshes (11×26 and 12×28) exhibit a maximum Dy deviation of less than 10−4, suggesting
that spatial convergence has, indeed, been obtained. The sensitivity of p to the exact shape of
Gf is again obvious in these tests: p still changes by 0.3 per cent in proceeding from a mesh of
11×26 to a mesh of 12×28.

We also investigated the case of a specified slip profile along GCD, u2(x1=H, x2)=U(x2).
The only change necessary to the formulation presented in this paper is the replacement of the
natural boundary condition along GCD with an essential boundary condition. We remark that
the velocity degrees of freedom on the slipping wall are now excluded from the solution space
of Equation (35), and thus p (Equation (44)) is ‘contaminated’ by the residual of the equations
involving those degrees of freedom. To illustrate this further, if we take 6 in Equation (44) to
be 61=0 in Vh (the discretized domain) and 62�Gf

=1 and 62=0 on all nodes not lying on Gf,
we see that there exists an additional contribution from the part of 62 untested in Equation
(35). This single-element contribution, however, is expected to vanish as h�0, and thus should
not influence the results of our simulation when h is small.

We have verified the above assertion using the following method. We first compute the slip
profile along GCD for the baseline example presented above using the Navier slip condition
with o=0.01, Ca=0.02, a 10×24 mesh and a convergence criterion that the maximum Dy is
less than 10−6. We then use this slip profile as a Dirichlet boundary condition in a new
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specified slip simulation with a similarly tight convergence criterion. We find that the
difference between the converged interface shapes predicted by the two simulations is less than
10−6.

7. CONCLUSIONS

We have developed a new variationally consistent numerical solution technique for problems
involving internal contact lines. The pressure indeterminacy is successfully removed by a force
balance compatibility condition. The associated interface iterative method displays fast conver-
gence characteristics for CaB0.1.
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